\(\pi \) rears its head, again and again

Tom Duff

January 20, 2019

1 \(\pi \) rears its head in geometry (unsurprisingly)

In Euclidean geometry the circumference of a circle is \(\pi \) times its diameter.

\[
\pi = \frac{C}{d}
\]

Equivalently

\[
\pi = \int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}
\]

This integral is just the arc length of a unit semicircle. And of course the area of a circle is \(\pi \) times the square of the radius.

\[
\pi = \frac{A}{r^2}
\]

2 \(\pi \) rears its head in trigonometry

The most obvious trig identity you might use to compute digits of \(\pi \) is

\[
\pi = 4 \arctan 1
\]

Using the Taylor series

\[
\arctan z = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \ldots
\]

this gives us:

\[
\pi = 4 \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \ldots \right)
\]

but this is really slow to converge because each term cancels out most of the previous term. It takes about half a million terms to get 5 digits of precision. But there are other trig identities that give us faster convergence. This one is due to John Machin (1706):

\[
\pi = 4 \left(4 \arctan \frac{1}{5} - \arctan \frac{1}{239} \right)
\]
Its series expansion converges at a more useful rate, about 1.4 digits per term. Before the advent of computers Machin’s formula was used by many (human) calculators to calculate more and more digits of π. Machin himself computed the first 100. Daniel Ferguson (1946) got 620 digits, the best result achieved without a digital computer.

3 \hspace{1em} \pi \text{ rears its head in an infinite product}

In 1655, John Wallis discovered this infinite product:

\[\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{4}{7} \cdot \frac{6}{7} \cdot \frac{8}{9} \cdot \ldots \]

4 \hspace{1em} \pi \text{ rears its head in continued fractions}

\[\pi = \frac{4}{1 + \frac{1^2}{1 + \frac{2^2}{1 + \frac{3^2}{1 + \frac{4^2}{1 + \ldots}}}}} \]

and

\[\frac{\pi}{2} = 1 - \frac{1}{3 - \frac{2 \cdot 3}{1 - \frac{1 \cdot 2}{4 \cdot 5}}} \]

The ‘simple’ (numerators all 1) continued fraction for π is

\[\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{292 + \frac{1}{1 + \ldots}}}} \]

Billions of terms of the simple continued fraction have been computed without any meaningful pattern being discovered.
5 \(\pi \) rears its head in complex analysis

Let’s look at Euler’s famous equation:

\[e^{i\pi} + 1 = 0 \]

The easiest way to see that this is true is to look at the Maclaurin series for \(e^{i\theta} \) and separate the even and odd terms:

\[
e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \sum_{n=0}^{\infty} i^{2n} \frac{\theta^{2n}}{(2n)!} + \sum_{n=0}^{\infty} i^{2n+1} \frac{\theta^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!} = \cos \theta + i \sin \theta
\]

(You have to be careful about convergence when you do infinite rearrangements of infinite sums, but everything is OK in this case.) Substituting \(\theta = \pi \) we get \(e^{i\pi} = -1 + 0i \). Bingo.

6 \(\pi \) rears its head in number theory

In 1644, Pietro Mengoli proposed the problem of evaluating

\[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \]

Euler got the answer in 1734: \(\frac{\pi^2}{6} \). This is important because it’s a value \(\zeta(2) \) of the Riemann zeta function:

\[
\zeta(s) = \sum_{n=0}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \text{Re}(s) > 1
\]

You can prove that the sum and the product are the same by first seeing that

\[
\frac{1}{1 - p^{-s}} = \sum_{k=0}^{\infty} \frac{1}{p^{ks}}
\]

(by long division) and then

\[
\prod_{p \text{ prime}} \sum_{k=0}^{\infty} \frac{1}{p^{ks}} = \sum_{n=0}^{\infty} \frac{1}{n^s}
\]

Running the distributive law on the LHS (an infinite number of times!) produces a sum containing each term of the RHS exactly once because of unique prime factorization.
Because the infinite product for \(\zeta(s) \) has a factor for each prime number, it is of central importance in analytic number theory.

Evaluating the Riemann zeta function at any even positive integer yields a power of \(\pi \) times a rational number. For example:

\[
\begin{align*}
\zeta(4) & = \frac{\pi^4}{90} \\
\zeta(6) & = \frac{\pi^6}{945} \\
\zeta(8) & = \frac{\pi^8}{9450}
\end{align*}
\]

Surprisingly, almost nothing is known about values of \(\zeta \) at odd positive integers.

7 \(\pi \) rears its head in statistics

This integral, due to Gauss:

\[
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}
\]

is important for all sorts of reasons. In particular the Standard Normal probability distribution, whose probability density function is

\[
N(0, 1) = \frac{e^{-x^2}}{\sqrt{\pi}}
\]

is central to probability and statistics.

Look at this integral:

\[
\pi = \int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}
\]

This means that

\[
\frac{1}{\pi(x^2 + 1)}
\]

is a probability density function (for the Cauchy distribution). The Cauchy distribution has the interesting feature that it has no mean, because the integral

\[
\int_{-\infty}^{\infty} \frac{x}{\pi(x^2 + 1)} dx
\]

diverges.